Cayley digraphs of 2-genetic groups of odd prime-power order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic automorphism groups of Cayley digraphs and graphs of abelian groups of prime-power order

We show that almost every Cayley graph Γ of an abelian group G of odd prime-power order has automorphism group as small as possible. Additionally, we show that almost every Cayley (di)graph Γ of an abelian group G of odd prime-power order that does not have automorphism group as small as possible is a normal Cayley (di)graph of G (that is, GL/Aut(Γ)).

متن کامل

Large Cayley digraphs and bipartite Cayley digraphs of odd diameters

Let Cd,k be the largest number of vertices in a Cayley digraph of degree d and diameter k, and let BCd,k be the largest order of a bipartite Cayley digraph for given d and k. For every degree d ≥ 2 and for every odd k we construct Cayley digraphs of order 2k ( ⌊d2⌋ )k and diameter at most k, where k ≥ 3, and bipartite Cayley digraphs of order 2(k − 1) ( ⌊d2⌋ )k−1 and diameter at most k, where k...

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

On the normality of Cayley digraphs of groups of order twice a prime

We call a Cayley digraph X = Cay(G, 8) normal for G if the right regular representation R( G) of G is normal in the full automorphism group Aut(X) of X. In this paper we determine the normality of Cayley digraphs of groups of order twice a prime.

متن کامل

On the normality of Cayley digraphs of valency 2 on non-abelian groups of odd square free order

In this paper, we prove that all Cayley digraphs of valency 2 on nonabelian groups of odd square-free order are normal. For a given subset S of a finite group G without the identity element 1, the Cayley digraph on G with respect to S is denoted by r =Cay(G, S) where V(r) = G, E(r) = {(g, 8g) I 9 E G,8 E S}. It is clear that Aut (r), the automorphism group of r, contains the right regular repre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2016

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2016.05.001